Home
Search results “Data mining tool features”
Data Mining Tool: extra features
 
02:17
Some extra features of the Data Mining Tool. Heatmaps and Gene Set Enrichment.
Views: 63 QMRIBioinf
Getting Started With Orange 10: Feature Scoring and Ranking
 
03:40
Feature scoring, ranking and feature selection in data mining. License: GNU GPL + CC Music by: http://www.bensound.com/ Website: http://orange.biolab.si/ Created by: Laboratory for Bioinformatics, Faculty of Computer and Information Science, University of Ljubljana
Views: 22895 Orange Data Mining
Machine Learning - Dimensionality Reduction - Feature Extraction & Selection
 
05:31
Enroll in the course for free at: https://bigdatauniversity.com/courses/machine-learning-with-python/ Machine Learning can be an incredibly beneficial tool to uncover hidden insights and predict future trends. This free Machine Learning with Python course will give you all the tools you need to get started with supervised and unsupervised learning. This #MachineLearning with #Python course dives into the basics of machine learning using an approachable, and well-known, programming language. You'll learn about Supervised vs Unsupervised Learning, look into how Statistical Modeling relates to Machine Learning, and do a comparison of each. Look at real-life examples of Machine learning and how it affects society in ways you may not have guessed! Explore many algorithms and models: Popular algorithms: Classification, Regression, Clustering, and Dimensional Reduction. Popular models: Train/Test Split, Root Mean Squared Error, and Random Forests. Get ready to do more learning than your machine! Connect with Big Data University: https://www.facebook.com/bigdatauniversity https://twitter.com/bigdatau https://www.linkedin.com/groups/4060416/profile ABOUT THIS COURSE •This course is free. •It is self-paced. •It can be taken at any time. •It can be audited as many times as you wish. https://bigdatauniversity.com/courses/machine-learning-with-python/
Views: 23911 Cognitive Class
Data Mining using R | Data Mining Tutorial for Beginners | R Tutorial for Beginners | Edureka
 
36:36
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R tutorial on "Data Mining using R" will help you understand the core concepts of Data Mining comprehensively. This tutorial will also comprise of a case study using R, where you'll apply data mining operations on a real life data-set and extract information from it. Following are the topics which will be covered in the session: 1. Why Data Mining? 2. What is Data Mining 3. Knowledge Discovery in Database 4. Data Mining Tasks 5. Programming Languages for Data Mining 6. Case study using R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Website: https://www.edureka.co/data-science Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. " Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 74100 edureka!
Orange Data Mining tool
 
21:52
For more information visit orange.biolab.si
Views: 8797 Deeksha Acharya
The Best Way to Prepare a Dataset Easily
 
07:42
In this video, I go over the 3 steps you need to prepare a dataset to be fed into a machine learning model. (selecting the data, processing it, and transforming it). The example I use is preparing a dataset of brain scans to classify whether or not someone is meditating. The challenge for this video is here: https://github.com/llSourcell/prepare_dataset_challenge Carl's winning code: https://github.com/av80r/coaster_racer_coding_challenge Rohan's runner-up code: https://github.com/rhnvrm/universe-coaster-racer-challenge Come join other Wizards in our Slack channel: http://wizards.herokuapp.com/ Dataset sources I talked about: https://github.com/caesar0301/awesome-public-datasets https://www.kaggle.com/datasets http://reddit.com/r/datasets More learning resources: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-data-science-prepare-data http://machinelearningmastery.com/how-to-prepare-data-for-machine-learning/ https://www.youtube.com/watch?v=kSslGdST2Ms http://freecontent.manning.com/real-world-machine-learning-pre-processing-data-for-modeling/ http://docs.aws.amazon.com/machine-learning/latest/dg/step-1-download-edit-and-upload-data.html http://paginas.fe.up.pt/~ec/files_1112/week_03_Data_Preparation.pdf Please subscribe! And like. And comment. That's what keeps me going. And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 185174 Siraj Raval
Introduction/tutorial to visual programming in Orange (python-based) a Data Mining Tool
 
34:10
Sumaiya Iqbal, Broad Institute of MIT and Hardvard & MGH is giving a overview of Orange a python-based Data Mining Tool. This tool is useful for individuals with and without programming background. Sumaiya gives examples for hierarchical clustering, PCA, prediction and text mining.
Views: 3735 Dennis Lal
Preprocessing Data using Orange Data Mining
 
07:20
Orange is a component-based data mining and machine learning software suite, featuring a visual programming front-end for explorative data analysis and visualization, and Python bindings and libraries for scripting. It includes a set of components for data preprocessing, feature scoring and filtering, modeling, model evaluation, and exploration techniques. It is implemented in C++ and Python. Its graphical user interface builds upon the cross-platform Qt framework. Orange is distributed free under the GPL. It is maintained and developed at the Bioinformatics Laboratory of the Faculty of Computer and Information Science, University of Ljubljana, Slovenia.
Views: 13897 Andi Ariffin
Getting Started with Orange 06: Making Predictions
 
03:46
Making predictions with classification tree and logistic regression. Train data set: http://tinyurl.com/fruits-and-vegetables-train Test data set: http://tinyurl.com/test-fruits-and-vegetables License: GNU GPL + CC Music by: http://www.bensound.com/ Website: http://orange.biolab.si/ Created by: Laboratory for Bioinformatics, Faculty of Computer and Information Science, University of Ljubljana
Views: 68074 Orange Data Mining
What is OLAP?
 
05:05
This video explores some of OLAP's history, and where this solution might be applicable. We also look at situations where OLAP might not be a fit. Additionally, we investigate an alternative/complement called a Relational Dimensional Model. To Talk with a Specialist go to: http://www.intricity.com/intricity101/
Views: 375514 Intricity101
3 - ETL Tutorial | Extract Transform and Load
 
12:20
This video aims to provide an overview of #ETL (Extract Load Transformation ) process and covers: #extraction Process and its Strategies Transformation and various tasks performed Loading Process and its Strategies ETL tools and its features. ETL Tools: Talend Open Studio, Jaspersoft ETL, Ab initio, Informatica, Datastage, Clover ETL, Pentaho ETL, Kettle ETL Tools Features: Source and Target Data System Connectivity Scalability and Performance Easy Transformation connectors Data Profiling Data Cleaning and Quality Easy integration with Web services Logging and Exception Handling Robust Administration features Efficient Batch and Real time processing For more details visit: http://www.vikramtakkar.com/2015/10/what-is-etl-extract-transformation-and.html Datawarehouse Playlist: https://www.youtube.com/playlist?list=PLJ4bGndMaa8FV7nrvKXeHCLRMmIXVCyOG
Views: 112968 Vikram Takkar
Data Mining Tool: Jubatus
 
09:03
Video by: ALCANTARA, Micaella A. RICO, Hazel Grace T. ULEP, John Richmond A. BIT31
Views: 129 Mica Alcantara
Spatial Data Mining I: Essentials of Cluster Analysis
 
01:07:14
Whenever we look at a map, it is natural for us to organize, group, differentiate, and cluster what we see to help us make better sense of it. This session will explore the powerful Spatial Statistics techniques designed to do just that: Hot Spot Analysis and Cluster and Outlier Analysis. We will demonstrate how these techniques work and how they can be used to identify significant patterns in our data. We will explore the different questions that each tool can answer, best practices for running the tools, and strategies for interpreting and sharing results. This comprehensive introduction to cluster analysis will prepare you with the knowledge necessary to turn your spatial data into useful information for better decision making.
Views: 28693 Esri Events
Machine Learning - Supervised VS Unsupervised Learning
 
05:04
Enroll in the course for free at: https://bigdatauniversity.com/courses/machine-learning-with-python/ Machine Learning can be an incredibly beneficial tool to uncover hidden insights and predict future trends. This free Machine Learning with Python course will give you all the tools you need to get started with supervised and unsupervised learning. This Machine Learning with Python course dives into the basics of machine learning using an approachable, and well-known, programming language. You'll learn about Supervised vs Unsupervised Learning, look into how Statistical Modeling relates to Machine Learning, and do a comparison of each. Look at real-life examples of Machine learning and how it affects society in ways you may not have guessed! Explore many algorithms and models: Popular algorithms: Classification, Regression, Clustering, and Dimensional Reduction. Popular models: Train/Test Split, Root Mean Squared Error, and Random Forests. Get ready to do more learning than your machine! Connect with Big Data University: https://www.facebook.com/bigdatauniversity https://twitter.com/bigdatau https://www.linkedin.com/groups/4060416/profile ABOUT THIS COURSE •This course is free. •It is self-paced. •It can be taken at any time. •It can be audited as many times as you wish. https://bigdatauniversity.com/courses/machine-learning-with-python/
Views: 89322 Cognitive Class
Oracle data mining tutorial, data mining techniques: classification
 
33:45
What is data mining? The Oracle Data Miner tutorial presents data mining introduction. Learn data mining techniques. More lessons, visit http://www.learn-with-video-tutorials.com/oracle-data-mining-tutorial-video
Datamining project in R programming_part3
 
01:15
software used KNIME tool. This tool is used to predict the values . It has inbuilt features
Views: 175 Saiprasad Shettar
INTRODUCTION TO DATA MINING IN HINDI
 
15:39
Buy Software engineering books(affiliate): Software Engineering: A Practitioner's Approach by McGraw Hill Education https://amzn.to/2whY4Ke Software Engineering: A Practitioner's Approach by McGraw Hill Education https://amzn.to/2wfEONg Software Engineering: A Practitioner's Approach (India) by McGraw-Hill Higher Education https://amzn.to/2PHiLqY Software Engineering by Pearson Education https://amzn.to/2wi2v7T Software Engineering: Principles and Practices by Oxford https://amzn.to/2PHiUL2 ------------------------------- find relevant notes at-https://viden.io/
Views: 113340 LearnEveryone
Weka Tutorial 09: Feature Selection with Wrapper (Data Dimensionality)
 
11:03
This tutorial shows you how you can use Weka Explorer to select the features from your feature vector for classification task (Wrapper method)
Views: 68569 Rushdi Shams
Download Images with Data Miner
 
05:03
Download actual image files from any website to your computer with the Data Miner tool. Learn more: https://data-miner.io/features/download-images
Views: 5098 Data Miner
Introduction to FOREX Data Mining
 
23:19
In this public webinar you will get an introduction to FOREX Data Mining with WEKA using several algorithms and sample data.
Weka Tutorial 10: Feature Selection with Filter (Data Dimensionality)
 
11:09
This tutorial shows how to select features from a set of features that performs best with a classification algorithm using filter method.
Views: 68510 Rushdi Shams
Getting Started with Weka - Machine Learning Recipes #10
 
09:24
Hey everyone! In this video, I’ll walk you through using Weka - The very first machine learning library I’ve ever tried. What’s great is that Weka comes with a GUI that makes it easy to visualize your datasets, and train and evaluate different classifiers. I’ll give you a quick walkthrough of the tool, from installation all the way to running experiments, and show you some of what it can do. This is a helpful library to have while you’re learning ML, and I still find it useful today to experiment with new datasets. Note: In the video, I quickly went through testing. This is an important topic in ML, and how you design and evaluate your experiments is even more important than the classifier you use. Although I publish these videos at turtle speed, I’ve started working on an experimental design one, and that’ll be next! Also, we will soon publish some testing tips and best practices on tensorflow.org (https://goo.gl/nZcS5R). Links from the video: Weka → https://goo.gl/2TYjGZ Ready to use datasets → https://goo.gl/PM8DtH More on evaluating classifiers, particularly in the medical domain → https://goo.gl/TwTYyk Check out the Machine Learning Recipes playlist → https://goo.gl/KewA03 Follow Josh on Twitter → https://twitter.com/random_forests Subscribe to the Google Developers channel → http://goo.gl/mQyv5L
Views: 74379 Google Developers
Data Mining with Weka (1.6: Visualizing your data)
 
08:38
Data Mining with Weka: online course from the University of Waikato Class 1 - Lesson 6: Visualizing your data http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/IGzlrn https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 69841 WekaMOOC
Data Science Hands on with Open source Tools - Seahorse Features
 
01:27
Enroll in the course for free at: https://bigdatauniversity.com/courses/data-science-hands-open-source-tools/ Introduction to Data Science Hands-on with Open Source Tools In data science, the opportunity to practice may seem overwhelming initially in terms of the access and configuration of tools. Here is where Data Scientist Workbench, a free cloud-based offering, comes into play. Use this tool to build out your skills! Get started with some of the most popular tools for collaborative data science on Data Scientist Workbench (DSWB), a free service that brings powerful open data science tools together so you can analyze, visualize, explore, clean data, run models and create apps. Prepare your data with OpenRefine, 'do' interactive Data Science with Jupyter and Zeppelin notebooks. If you are comfortable with R, run RStudio IDE on the Cloud! This free offering on the Cloud allows you to work no matter where you are without having to install anything. Start your work at home from a browser, continue it on the train (while you are commuting), and finish it at work!. All you need is an internet connection, while having all of these open source tools at your finger tips hosted on the Cloud. Moreover, checkout Seahorse, a tool with a visual approach to programming that will allow you to build data science pipelines. Seahorse is powered by Apache Spark and allows non-programmers write complex applications that may include the use of Machine Learning algorithms. Connect with Big Data University: https://www.facebook.com/bigdatauniversity https://twitter.com/bigdatau https://www.linkedin.com/groups/4060416/profile ABOUT THIS COURSE •This course is free. •It is self-paced. •It can be taken at any time. •It can be audited as many times as you wish. https://bigdatauniversity.com/courses/data-science-hands-open-source-tools/
Views: 6828 Cognitive Class
Excel Data Analysis: Sort, Filter, PivotTable, Formulas (25 Examples): HCC Professional Day 2012
 
55:13
Download workbook: http://people.highline.edu/mgirvin/ExcelIsFun.htm Learn the basics of Data Analysis at Highline Community College Professional Development Day 2012: Topics in Video: 1. What is Data Analysis? ( 00:53 min mark) 2. How Data Must Be Setup ( 02:53 min mark) Sort: 3. Sort with 1 criteria ( 04:35 min mark) 4. Sort with 2 criteria or more ( 06:27 min mark) 5. Sort by color ( 10:01 min mark) Filter: 6. Filter with 1 criteria ( 11:26 min mark) 7. Filter with 2 criteria or more ( 15:14 min mark) 8. Filter by color ( 16:28 min mark) 9. Filter Text, Numbers, Dates ( 16:50 min mark) 10. Filter by Partial Text ( 20:16 min mark) Pivot Tables: 11. What is a PivotTable? ( 21:05 min mark) 12. Easy 3 step method, Cross Tabulation ( 23:07 min mark) 13. Change the calculation ( 26:52 min mark) 14. More than one calculation ( 28:45 min mark) 15. Value Field Settings (32:36 min mark) 16. Grouping Numbers ( 33:24 min mark) 17. Filter in a Pivot Table ( 35:45 min mark) 18. Slicers ( 37:09 min mark) Charts: 19. Column Charts from Pivot Tables ( 38:37 min mark) Formulas: 20. SUMIFS ( 42:17 min mark) 21. Data Analysis Formula or PivotTables? ( 45:11 min mark) 22. COUNTIF ( 46:12 min mark) 23. Formula to Compare Two Lists: ISNA and MATCH functions ( 47:00 min mark) Getting Data Into Excel 24. Import from CSV file ( 51:21 min mark) 25. Import from Access ( 54:00 min mark) Highline Community College Professional Development Day 2012 Buy excelisfun products: https://teespring.com/stores/excelisfun-store
Views: 1568516 ExcelIsFun
Data Warehouse & Mining 2 Data Warehouse Features |lecture| tutorial|sanjaypathakjec
 
08:46
data warehouse tutorial and lecture of data warehouse features Data warehouse have mainly four features 1 subject oriented 2 integrated 3 time variant 4 non volatile
Views: 10677 Sanjay Pathak
Advanced Excel - Data Mining Techniques using Excel
 
27:08
Key Takeaways for the session : Breaking junk using formula and generate reports VBA to manipulate data in required format Data extraction from external files Who should attend? People from any domain who work on data in any form. Good for Engineers, Leads, Managers, Sales people, HR, MIS experts, Data scientists, IT Support, BPO, KPO etc. Feel free to write me at [email protected]
Weka Tutorial 02: Data Preprocessing 101 (Data Preprocessing)
 
10:42
This tutorial demonstrates various preprocessing options in Weka. However, details about data preprocessing will be covered in the upcoming tutorials.
Views: 171056 Rushdi Shams
More Data Mining with Weka (4.4: Fast attribute selection using ranking)
 
07:33
More Data Mining with Weka: online course from the University of Waikato Class 4 - Lesson 4: Fast attribute selection using ranking http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/I4rRDE https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 16484 WekaMOOC
▶ 5 Most Used Data Mining Software || Data Mining Tools -- Famous Data Mining Tools
 
03:23
»See Full #Data_Mining Video Series Here: https://www.youtube.com/watch?v=t8lSMGW5eT0&list=PL9qn9k4eqGKRRn1uBmEhlmEd58ATOziA1 In This Video You are gonna learn Data Mining #Bangla_Tutorial Data mining is an important process to discover knowledge about your customer behavior towards your business offerings. » My #Linkedin_Profile: https://www.linkedin.com/in/rafayet13 » Read My Full Article on Data Mining Career Opportunity & So On » Link: https://medium.com/@rafayet13 #Learn_Data_Mining_In_A_Easy_Way #Data_Mining_Essential_Course #Data_Mining_Course_For_Beginner Here We're Going to Learn Which Software is best to use in Data Mining Field R remains the leading tool, with 49% share, but Python grows faster and almost catches up to R. RapidMiner remains the most popular general Data Science. আধুনিক প্রযুক্তির ব্যবহার বৃদ্ধির সাথে অতি দ্রুত ডেটা উৎপন্ন হচ্ছে। টেক জায়ান্ট আইবিএম জানায় ইন্টারনেটে যত ডেটা আছে তার ৯০ ভাগ উৎপন্ন হয়েছে গত তিন বছরে। এ ডেটা উৎপন্নের হার দিনকে দিন বেড়েই চলছে। বিশেষজ্ঞদের ধারনা ২০২০ সাল নাগাদ প্রায় ৪০ জেটাবাইট ডেটা জেনারেট হবে। যা ২০১১ তুলনায় প্রায় ৫০ গুন বেশি। বিশাল পরিমাণ এই ডেটা প্রক্রিয়াজাতের মাধ্যমে বিজ্ঞান, গবেষণা, চিকিৎসা, শিক্ষা ও ব্যবসায় ব্যপক ভুমিকা রাখা যেতে পারে। তাই বলা হচ্ছে “ বিগ ডেটা ইজ বিগ ইমপ্যাক্ট।” Data Mining,big data,data analysis,data mining tutorial,book , Bangla tutorials,data mining software,Data Mining,What is data mining, bookbd, data analysis,data mining tutorial,data science,big data,business tutorial,data mining Bangla tutorial,how to,how to mine data,knowledge discovery,Artificial Intelligence,Deep learning,machine learning,Python tutorials,
Views: 6985 BookBd
Getting Started with Orange 15: Image Analytics - Classification
 
04:05
How to use embeddings for image classification and what can misclassifications tell us. Images kindly provided by: The Bouq at https://bouqs.com/ License: GNU GPL + CC Music by: http://www.bensound.com/ Website: https://orange.biolab.si/ Created by: Laboratory for Bioinformatics, Faculty of Computer and Information Science, University of Ljubljana
Views: 19059 Orange Data Mining
What is Business Intelligence (BI)?
 
03:47
There are many definitions for Business Intelligence, or BI. To put it simply, BI is about delivering relevant and reliable information to the right people at the right time with the goal of achieving better decisions faster. If you wanna have efficient access to accurate, understandable and actionable information on demand, then BI might be right for your organization. For more information, contact Hitachi Solutions Canada (canada.hitachi-solutions.com).
Views: 387002 Hitachi Solutions Canada
More Data Mining with Weka (2.1: Discretizing numeric attributes)
 
10:06
More Data Mining with Weka: online course from the University of Waikato Class 2 - Lesson 1: Discretizing numeric attributes http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/QldvyV https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 20903 WekaMOOC
Data Mining with Weka (1.3: Exploring datasets)
 
10:38
Data Mining with Weka: online course from the University of Waikato Class 1 - Lesson 3: Exploring datasets http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/IGzlrn https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 81701 WekaMOOC
Data Mining JIRA Tickets to Gain Insights into Organizational Behavior - Wendy Grus
 
33:24
PyData LA 2018 My team at Hulu makes a tool called Glyph that is used internally to create realtime reports to monitor app health and feature usage. While existing telemetry tells us the who and when of Glyph usage, it does not tell us why it is used. To gain insights into how Glyph is used by product and tech, I built a flask app to mine JIRA data for references to Glyph reports using the Python jira library. --- www.pydata.org PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R. PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.
Views: 519 PyData
MATLAB Tools for Scientists: Introduction to Statistical Analysis
 
54:53
Free MATLAB Trial: https://goo.gl/yXuXnS Request a Quote: https://goo.gl/wNKDSg Contact Us: https://goo.gl/RjJAkE Learn more about MATLAB: https://goo.gl/8QV7ZZ Learn more about Simulink: https://goo.gl/nqnbLe ------------------------------------------------------------------------- Researchers and scientists have to commonly process, visualize and analyze large amounts of data to extract patterns, identify trends and relationships between variables, prove hypothesis, etc. A variety of statistical techniques are used in this data mining and analysis process. Using a realistic data from a clinical study, we will provide an overview of the statistical analysis and visualization capabilities in the MATLAB product family. Highlights include: • Data management and organization • Data filtering and visualization • Descriptive statistics • Hypothesis testing and ANOVA • Regression analysis
Views: 18296 MATLAB
Getting Started with Orange 01: Welcome to Orange
 
02:16
Introduction to Orange data mining software. Learn about the development of Orange workflows, data loading, basic machine learning algorithms and interactive visualizations. Download Orange from: https://orange.biolab.si/download/ License: GNU GPL + CC Music by: http://www.bensound.com/ Website: http://orange.biolab.si/ Created by: Laboratory for Bioinformatics, Faculty of Computer and Information Science, University of Ljubljana
Views: 183756 Orange Data Mining
Feature Selection Using R
 
16:28
Provides steps for carrying out feature selection for building machine learning models using Boruta package. R code: https://goo.gl/h46Rv2 More ML videos: https://goo.gl/WHHqWP Feature selection is an important tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 4707 Bharatendra Rai
Getting Started with Orange 17: Text Clustering
 
03:51
How to transform text into numerical representation (vectors) and how to find interesting groups of documents using hierarchical clustering. License: GNU GPL + CC Music by: http://www.bensound.com/ Website: https://orange.biolab.si/ Created by: Laboratory for Bioinformatics, Faculty of Computer and Information Science, University of Ljubljana
Views: 17989 Orange Data Mining
MSCI 723 Big Data Analytics Tut6: Association Rule Learning, Apriori Algorithm
 
20:14
Hello everyone, this week in the tutorial we covered association rule learning and some apriori algorithm implementations I also introduced Orange, an open source data visualization and data analysis with interactive workflows and a large toolbox. Orange provides a Python library as week as an interface interface for data mining! Orange: http://orange.biolab.si/getting-started/ http://orange.biolab.si/screenshots/ http://orange.biolab.si/docs/latest/widgets/rst/ Tutorial: http://nbviewer.jupyter.org/github/datascienceguide/datascienceguide.github.io/blob/master/tutorials/Association-Rule-Mining.ipynb
Views: 8978 Andrew Andrade
Feature Engineering in SAS Visual Data Mining & Machine Learning
 
13:10
http://support.sas.com/software/products/visual-data-mining-machine-learning/index.html Presenter: Radhikha Myneni Radhikha Myneni discusses some feature engineering techniques available in SAS Visual Data Mining and Machine Learning 8.3. SUBSCRIBE TO THE SAS SOFTWARE YOUTUBE CHANNEL http://www.youtube.com/subscription_center?add_user=sassoftware ABOUT SAS SAS is the leader in analytics. Through innovative analytics, business intelligence and data management software and services, SAS helps customers at more than 75,000 sites make better decisions faster. Since 1976, SAS has been giving customers around the world THE POWER TO KNOW®. VISIT SAS http://www.sas.com CONNECT WITH SAS SAS ► http://www.sas.com SAS Customer Support ► http://support.sas.com SAS Communities ► http://communities.sas.com Facebook ► https://www.facebook.com/SASsoftware Twitter ► https://www.twitter.com/SASsoftware LinkedIn ► http://www.linkedin.com/company/sas Google+ ► https://plus.google.com/+sassoftware Blogs ► http://blogs.sas.com RSS ►http://www.sas.com/rss
Views: 1015 SAS Software
Data Mining with Weka (1.5: Using a filter )
 
07:34
Data Mining with Weka: online course from the University of Waikato Class 1 - Lesson 5: Using a filter http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/IGzlrn https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 69542 WekaMOOC
Weka Tutorial 06: Discretization (Data Preprocessing)
 
03:53
An important feature of Weka is Discretization where you group your feature values into a defined set of interval values. Experiments showed that algorithms like Naive Bayes works well with discretized feature values
Views: 60082 Rushdi Shams
Getting Started with Orange 02: Data Workflows
 
02:35
Creating a data analysis workflow in Orange data mining software. License: GNU GPL + CC Music by: http://www.bensound.com/ Website: http://orange.biolab.si/ Created by: Laboratory for Bioinformatics, Faculty of Computer and Information Science, University of Ljubljana
Views: 93373 Orange Data Mining
How to Download and Install Orange Data Mining Tool
 
04:00
Reach out to us on www.techontea.com Subscribe to our Channel and Follow us on Social Media to stay updated How to Download and Install Orange Data Mining Tool 1. Download Orange Tool Link: https://orange.biolab.si/download/ 2. Install Orange Data Mining Tool Installation Done , Now you can open any database like Excel DB or any other Database and use Orange Tool Documents from Orange: https://orange.biolab.si/docs/ About Orange Tool: Orange is an open-source data visualization, machine learning and data mining toolkit. It features a visual programming front-end for explorative data analysis and interactive data visualization, and can also be used as a Python library. Subscribe and Stay connected with us! 👉 Subscribe on YouTube: https://goo.gl/hJCieo 👉 Like us on Facebook: https://www.facebook.com/techontea 👉 Follow us on Twitter: https://twitter.com/techontea 👉 Follow us on Instagram: https://www.instagram.com/techontea You can always ask for a solution buy just filling your query details on www.techontea.com We will make sure to provide you your solution as soon as possible About: Tech on Tea a show where we talk about Blogging, WordPress, SEO, Entrepreneurship. IT Solutions and give resolutions and tips for your IT Requirements. If you are looking for any technology solutions, learning new things and want to get a standard resolutions for your issues than, this channel is perfect fit for you. Subscribe to stay updated with channel updates.
Views: 36 Tech on Tea
Building data mining Taverna workflows
 
02:57
Tutorial on building data mining Taverna workflows the e-LICO project tools
Views: 2044 mygridorguk
RapidMiner Tutorial - GUI Overview (Data Mining and Predictive Analytics Software)
 
02:55
A tutorial overview of the RapidMiner GUI. RapidMiner is an open source system for data mining, predictive analytics, machine learning, and artificial intelligence applications. For more information: http://rapid-i.com/ Brought to you by Rapid Progress Marketing and Modeling, LLC (RPM Squared) http://www.RPMSquared.com/
Views: 3521 Predictive Analytics
Tech Talk: How Route Data Mining Helps You Make Better Decisions
 
41:00
In this Tech Talk you will learn about the features of the SUPERLOAD Route Data Miner (RDM) tool and see the significant upgrades to the capabilities and interface available with the latest SUPERLOAD CONNECT Edition. Data collected from permitted trips can hold significant value for a transportation agency including: Planning the best places to spend limited resources Forecasting demand Identifying the optimal way to leverage enforcement resources For more, visit https://www.bentley.com/en/products/brands/superload
Linear Regression Algorithm | Linear Regression in R | Data Science Training | Edureka
 
57:06
( Data Science Training - https://www.edureka.co/data-science ) This Edureka Linear Regression tutorial will help you understand all the basics of linear regression machine learning algorithm along with examples. This tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Data Science concepts. Below are the topics covered in this tutorial: 1) Introduction to Machine Learning 2) What is Regression? 3) Types of Regression 4) Linear Regression Examples 5) Linear Regression Use Cases 6) Demo in R: Real Estate Use Case Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LinearRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 69761 edureka!

My sweet roomies online dating
Here!
Gay group fuck ebony
Adidas store amsterdam online dating
Schastlivyj konec online dating